ሺܟ|߱ሻൌ൬ߚ
2ߨ൰
ଶ
exp ൬െߚ
2 ܟ௧ܟ൰
(3.58)
s
߱ሻൌ൬ߴ
2ߨ൰
ଵ/ଶ
exp ൬െߴ
2 ߙଶ൰ቀ߬
2ߨቁ
ଵ/ଶ
exp ቀെ߬
2 ߚଶቁ
(3.59)
ative logarithm of ࣦ thus leads to
ൌ1
2 ൜ߙሺ܁ܟെܡሻ௧ሺ܁ܟെܡሻߚܟ௧ܟߴߙଶ߬ߚଶ
െܰlogα െܭlogߚെlogߴെlog߬
ൠ
(3.60)
maximum a posteriori procedure is used to estimate parameters for
BBFNN [Yang, 2005b]. The parameters are updated in a loop
initialised values for w, ߴ and ߬. The parameters ߙ and ߚ are
d at first. The estimate of ߙ is shown below, where e is an error
tween a model output vector ܡො and a target vector y,
ߙൌെ܍ଶ√܍ସ8ߴܰ
4ߴ
(3.61)
stimate of ߚ is shown below,
ߚൌെܟ௧ܟඥሺܟ௧ܟሻଶ8߬ܭ
4߬
(3.62)
ߙ and ߚ have been estimated, w is estimated using the following
ܟ= ߙሺߙ܁௧܁ߚ۷ሻିଵ܁௧ܡ
(3.63)
wards, the hyper parameters are also updated as below,